Valcent Product Inc


High Density Vertical Bioreactor


The Holy Grail in the renewable energy sector has been to create a clean, green process which uses only light, water and air to create fuel. Valcent's HDVB algae-to-biofuel technology mass produces algae, vegetable oil which is suitable for refining into a cost-effective, non-polluting biodiesel. The algae derived fuel will be an energy efficient replacement for fossil fuels and can be used in any diesel powered vehicle or machinery. In addition, 90% by weight of the algae is captured carbon dioxide, which is "sequestered" by this process and so contributes significantly to the reduction of greenhouse gases. Valcent has commissioned the world's first commercial-scale bioreactor pilot project at its test facility in El Paso, Texas.

Current data projects high yields of algae biomass, which will be harvested and processed into algal oil for biofuel feedstock and ingredients in food, pharmaceutical, and health and beauty products at a significantly lower cost than comparable oil-producing crops such as palm and soyabean (soybean).

The HDVB technology was developed by Valcent in recognition and response to a huge unsatisfied demand for vegetable oil feedstock by Biodiesel refiners and marketers. Biodiesel, in 2000, was the only alternative fuel in the United States to have successfully completed the Environmental Protection Agency required Tier I and Tier II health effects testing under the Clean Air Act. These tests conclusively demonstrated Biodiesel's significant reduction of virtually all regulated emissions. A U.S. Department of Energy study has shown that the production and use of Biodiesel, compared to petroleum diesel, resulted in a 78.5% reduction in carbon dioxide emissions.

Algae, like all plants, require carbon dioxide, water with nutrients and sunlight for growth. The HDVB bioreactor technology is ideal for location adjacent to heavy producers of carbon dioxide such as coal fired power plants, refineries or manufacturing facilities, as the absorption of CO2 by the algae significantly reduces greenhouse gases. These reductions represent value in the form of Certified Emission Reduction credits, so-called carbon credits, in jurisdictions that are signatories to the Kyoto Protocol. Although the carbon credit market is still small, it is growing fast, valued in 2005 at $6.6 Billion in the European Union and projected to increase to $77 Billion if the
United States accepts a similar national cap-and-trade program.

Valcent's HDVB bioreactor system can be deployed on non-arable land, requires very little water due to its closed circuit process, does not incur significant labor costs and does not employ fossil fuel burning equipment, unlike traditional food/biofuel crops, like soy and palm oil. They require large agricultural acreage, huge volumes of water and chemicals, and traditional farm equipment and labor. They are also much less productive than the HDVB process: soybean, palm oil and conventional pond-grown algae typically yield 48 gallons, 635 gallons and 10,000 gallons per acre per year respectively.